1	(i)	both curves with positive gradients in 1 st and 2 nd quadrants; ignore labels for this mark	M1	do not award if clearly not exponential shape; condone touching negative <i>x</i> -axis but not crossing it	consider each curve independently; ignore scales and points apart from (0,1)
		both through $(0,1)$	A1		allow if indicated in table of values or commentary if not marked on graph
		$y = 3^{2x}$ above $y = 3^x$ in first quadrant and below it in second	A1	must be clearly labelled, $A0$ if wrongly attributed or if coincide for negative x from	if M0 allow SC1 for one graph fully correct
			[3]	(0,1)	
1	(ii)	<i>x</i> = 3	B1	B0 if wrongly attributed	
		$3^{x} = 27$	B1	B0 if wrongly attributed	allow $3^3 = 27$ with $x = 3$ stated
			[2]		
2		m = 3 seen	B 1		
		$\log y = m\log x + 2 \text{ or } \log y = m\log x + \log 100$	M1	or $\log y - 8 = m(\log x - 2)$	condone lack of base; " $c = 2$ " is insufficient
		$\log y = \log x^3 + 2 \text{ or } \log y = \log x^3 + \log 100$ or better	M1	or $10^{\log y} = 10^{3\log x + 2}$ or $10^{3\log x + \log 100}$ or better	condone lack of base, but not bases other than 10 unless fully recovered
		$y = 100x^3$ or $y = 10^{3\log x + 2}$ or $y = 10^{\log x^3 + 2}$ www.isw	A1	$y = 10^{3\log x + \log 100}$ or $y = 10^{\log x^3 + \log 100}$	
		W W W 15 W	[4]		

3	$(x+1)\log 3 = 2x\log 5 \text{ oe}$	M1	or $x + 1 = 2x \log_{3} 5$ or $(x + 1)\log_{5} 3 = 2x$	allow recovery from omission of brackets in later working
	$\log 3 = x(2 \log 5 - \log 3)$ oe	A1	$x(1-2\log_3 5) = -1$ oe	NB 0.477121254= 0.920818754 <i>x</i>
			or $x(2 - \log_5 3) = \log_5 3$ oe	-1.929947041x = -1
	$\frac{\log 3}{2\log 5 - \log 3}$ oe	A1	$\frac{1}{2\log_3 5 - 1}$ oe	1.317393806x = 0.682606194
			or $\frac{\log_5 3}{2 - \log_5 3}$ oe	
	0.518 cao	A1		answer only does not score
		[4]		

4	(i)	$\log_{10}h = \log_{10}a + bt \qquad \text{www}$	B1		condone omission of base
		$m = b, c = \log_{10}a$	B1		must be clearly stated : linking equations is insufficient
			[2]		
4	(ii)	-0.15, 0[.00], 0.23, 0.36, 0.56, 0.67, 0 0.91, 1.08, 1.2[0]	.78, B2	B1 if 1 error	
		plots correct (tolerance half square)	B1	condone 1 error – see overlay	no ft available for plots
		single ruled line of best fit for values of from 5 to 50 inclusive	of x B1	line must not go outside overlay between $x = 5$ and $x = 50$	
			[4]		

(Questio	on	Answer	Marks	Guidanc	e
4	(iii)		$-0.3 \le y$ -intercept ≤ -0.22	B1	may be implied by $0.5 \le a \le 0.603$	
			valid method to find gradient of line	M1	may be embedded in equation;	condone values from table;
					may be implied by eg m between 0.025 and 0.035	condone slips eg in reading from graph
			$h = \text{their}a \times 10^{\text{their}bt}$	M1		if B1M1M0, then SC1 for
			or $h = 10^{\text{their } \log a + \text{their } bt}$			logh = loga + theirbt isw
			$0.028 \le b \le 0.032$ and $0.5 \le a \le 0.603$ or $-0.3 \le \log a \le -0.22$	A1		if both values in the acceptable range for A1
				[4]		
4	(iv)		$a10^{60b} - a10^{50b}$	M1	or $10^{\log a + b \times 60} - 10^{\log a + b \times 50}$	condone 15.9 as second term
			their values for <i>a</i> and <i>b</i>		or their values for loga and b	may follow starting with $\log h = \log a + \text{their}bt$
			8.0 to 26.1 inclusive	A1		NB A0 for estimate without clear valid method using model;
						both marks available even if a or b or both are outside range in (iii)
				[2]		
4	(v)		comment on the continuing reduction in thickness and its consequences	B1	eg in long term, it predicts that reduction in thickness will continue to increase, even when the glacier has completely melted	
				[1]		

5	(i)	$65 \times (1 - 0.017)^3$ oe	M1	may be longer method finding decrease year by year etc	NB use of 3×0.017 leads to 61.685 , which doesn't score
		61.7410 showing more than 3 sf	A1	answer 61.7 given	
			[2]		
5	(ii)	$[d =] 65 \times 0.983^n$ oe	B1	eg $63.895 \times 0.983^{n-1}$ or $61.7 \times 0.983^{n-3}$	
			[1]		

(Question	Answer	Marks	Guida	nce
5	(iii)	$65 \times 0.983^n < 3 \text{ or}$ $\log_{10}(65 \times 0.983^n) < \log_{10}3 \text{ oe}$	M1*		condone omission of base 10 throughout
		$\log_{10}65 + \log_{10}0.983^n < \log_{10}3$ www	M1dep	may be implied by eg $\log_{10}65 + n \log_{10}0.983 < \log_{10}3$	if M0M0 , SC1 for $\log_{10}65 + n \log_{10}0.983 < \log_{10}3$ even if < is replaced by eg = or > with no prior incorrect log moves
		$[\log_{10}65 + n \log_{10}0.983 < \log_{10}3]$ n log_{10}0.983 < log_{10}3 - log_{10}65 and		or $[\log_{10}0.983^n < \log_{10}3 - \log_{10}65]$	NB watch for correct inequality sign at each step
		completion to $n > \frac{\log_{10} 3 - \log_{10} 65}{\log_{10} 0.983}$ AG www	A1	inequality signs must be correct throughout	reason for change of inequality sign not required
		n = 180 cao	B1	B0 for <i>n</i> > 180	<i>n</i> > 179.38
5	(iv)	$63.895 = 65 \times 10^{-k}$ soi	[4] B1	or $65 \times 0.983 = 65 \times 10^{-k}$	accept 63.895 rot to 3 or 4 sf;
3		$03.893 - 03 \times 10^{-10}$ sol	DI	01 03 × 0.983 = 03 × 10	B1 may be awarded for substitution of $t = 1$ after manipulation
		log_{10} (their 63.895) = $log_{10}65 - k$ or $-k = log_{10}$ (their 0.983)	M1	their 63.895 must be from attempt to reduce 65 by 1.7% at least once	M1A1A1 may be awarded if other value of <i>t</i> with correct <i>d</i> is used
		$[k =]7.4 \times 10^{-3} \text{ to } 7.45 \times 10^{-3}$	A1	$[k =] -\log_{10} 0.983$ isw	
		[d =] 42.1 to 42.123 [°C] isw	A1		NB B1M1A0A1 is possible; unsupported answers for <i>k</i> and/or <i>d</i> do not score
			[4]		

6	gradient = 3 seen	B1	may be embedded	
	$log_{10} y - 5 = (their 3)(log_{10} x - 1)$ or using (5, 17)	M1	or $\log_{10} y = 3 \log_{10} x + c$ and substitution of (1, 5) or (5, 17) for $\log_{10} x$ and $\log_{10} y$	condone omission of base throughout NB may recover from eg $Y = 3X + 2$
	$\log_{10} y = 3 \log_{10} x + 2 \text{ oe}$	A1		The may recover from eg $T = 5X + 2$
	$y = 10^{3\log_{10} x+2}$ oe	M1	or $\log_{10} y = \log_{10} x^3 + \log_{10} 100$	or $\log_{10} \frac{y}{x^3} = 2$ or $\log_{10} y = \log_{10} 100x^3$
	$y = 100x^3$	A1 [5]		

7	$6 = ab$ and $3.6 = ab^2$	M1	log6 = loga + logb and log3.6 = loga + logb2	
	$a = 10, \ b = 0.6$ c.a.o.	A2	A1 each; if M0 then B3 for both, B1 for one	

8	$\log p = \log s + \log t^n$	M1	$\frac{S}{S}$	
	$\log p = \log s + n \log t$	M1	$n\log t = \log\left(\frac{p}{s}\right)$	or A2 for $[n =]\log_t\left(\frac{p}{s}\right)$ [base <i>t</i> needed] following first M1
	$[n=]\frac{\log p - \log s}{\log t} \text{ or } \frac{\log\left(\frac{p}{s}\right)}{\log t}$ [base not required]	A1	as final answer (i.e. penalise further incorrect simplification)	
9	$\log 16^{\frac{1}{2}}$ or [-] $\log 5^2$ s.o.i.	M1		if $a = 10$ assumed, $x = 12$ c.a.o. scores B3 www
	$\log(4\times75)$ or $\log\frac{75}{25}$ s.o.	M1	$x = \frac{4 \times 75}{25}$ implies M1M1	no follow through
	x = 12 www	A1		