1	(i)	both curves with positive gradients in $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants; ignore labels for this mark both through $(0,1)$ $y=3^{2 x}$ above $y=3^{x}$ in first quadrant and below it in second	M1 A1 A1 [3]	do not award if clearly not exponential shape; condone touching negative x-axis but not crossing it must be clearly labelled, A0 if wrongly attributed or if coincide for negative x from $(0,1)$	consider each curve independently; ignore scales and points apart from $(0,1)$ allow if indicated in table of values or commentary if not marked on graph if M0 allow SC1 for one graph fully correct
1	(ii)	$\begin{aligned} & x=3 \\ & 3^{x}=27 \end{aligned}$	B1 B1 [2]	B0 if wrongly attributed B0 if wrongly attributed	allow $3^{3}=27$ with $x=3$ stated
2		$\begin{aligned} & m=3 \text { seen } \\ & \log y=m \log x+2 \text { or } \log y=m \log x+\log 100 \\ & \log y=\log x^{3}+2 \text { or } \log y=\log x^{3}+\log 100 \\ & \text { or better } \\ & y=100 x^{3} \text { or } y=10^{3 \log x+2} \text { or } y=10^{\log x^{3}+2} \\ & \text { www isw } \end{aligned}$	B1 M1 M1 A1 [4]	or $\log y-8=m(\log x-2)$ or $10^{\log y}=10^{3 \log x+2}$ or $10^{3 \log x+\log 100}$ or better $y=10^{3 \log x+\log 100} \text { or } y=10^{\log x^{3}+\log 100}$	condone lack of base; " $c=2$ " is insufficient condone lack of base, but not bases other than 10 unless fully recovered

4	(i)		$\log _{10} h=\log _{10} a+b t \quad$ www $m=b, c=\log _{10} a$	B1 B1	condone omission of base must be clearly stated: linking equations is insufficient	
$\mathbf{4}$	(ii)	$-0.15,0[.00], 0.23,0.36,0.56,0.67,0.78$, $0.91,1.08,1.2[0]$ plots correct (tolerance half square) single ruled line of best fit for values of x from 5 to 50 inclusive	B2	B1 if 1 error	B1	Condone 1 error - see overlay line must not go outside overlay between $x=5$ and $x=50$

Question		Answer	Marks	Guidance	
4	(iii)	$-0.3 \leq y$-intercept ≤-0.22 valid method to find gradient of line $\begin{aligned} & h=\text { their } a \times 10^{\text {theirbt }} \\ & \text { or } h=10^{\text {their log } a+\text { theirbt }} \\ & 0.028 \leq b \leq 0.032 \text { and } \\ & 0.5 \leq a \leq 0.603 \text { or }-0.3 \leq \log a \leq-0.22 \end{aligned}$	B1 M1 M1 A1 [4]	may be implied by $0.5 \leq a \leq 0.603$ may be embedded in equation; may be implied by eg m between 0.025 and 0.035	condone values from table; condone slips eg in reading from graph if B1M1M0, then SC1 for $\operatorname{logh}=\operatorname{loga}+$ theirbt isw if both values in the acceptable range for A1
4	(iv)	$a 10^{60 b}-a 10^{50 b}$ their values for a and b 8.0 to 26.1 inclusive	M1 A1 [2]	or $10^{\log a+\mathrm{b} \times 60}-10^{\log a+\mathrm{b} \times 50}$ or their values for $\log a$ and b	condone 15.9 as second term may follow starting with $\log h=\log a+$ their $b t$ NB A0 for estimate without clear valid method using model; both marks available even if a or b or both are outside range in (iii)
4	(v)	comment on the continuing reduction in thickness and its consequences	B1 [1]	eg in long term, it predicts that reduction in thickness will continue to increase, even when the glacier has completely melted	

5	(i)	$65 \times(1-0.017)^{3}$ oe 61.7410... showing more than 3 sf	M1 A1 [2]	may be longer method finding decrease year by year etc answer 61.7 given	NB use of 3×0.017 leads to 61.685 , which doesn't score
5	(ii)	[d =] 65×0.983^{n} oe	B1 [1]	eg $63.895 \times 0.983^{n-1}$ or $61.7 \times 0.983^{n-3}$	

| 7 | $6=a b$ and $3.6=a b^{2}$ | $\mathbf{M 1}$ | $\log 6=\log a+\log b a n d$
 $\log 3.6=\log a+\log b^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| A2 $=10, b=0.6$ c.a.o. | A1 each;
 if M0 then B3 for both, B1 for one | | |

8	$\log p=\log s+\log t^{n}$ $\log p=\log s+n \log t$ $[n=] \frac{\log p-\log s}{\log t} \text { or } \frac{\log \left(\frac{p}{s}\right)}{\log t}$ [base not required]	M1 M1 A1	or $\frac{p}{s}=t^{n}$ $n \log t=\log \left(\frac{p}{s}\right)$ as final answer (i.e. penalise further incorrect simplification)	or A2 for [$n=] \log _{t}\left(\frac{p}{s}\right)$ [base t needed] following first M1
9	$\begin{aligned} & \log 16^{1 / 2} \text { or }[-] \log 5^{2} \text { s.o.i. } \\ & \log (4 \times 75) \text { or } \log \frac{75}{25} \text { s.o. } \\ & x=12 \mathrm{www} \end{aligned}$	M1 M1 A1	$x=\frac{4 \times 75}{25}$ implies M1M1	if $a=10$ assumed, $x=12$ c.a.o. scores B3 www no follow through

